
On the dynamics of propagating buckles in pipelines

S. Kyriakides *, T.A. Netto

Research Center for Mechanics of Solids, Structures and Materials, WRW 110, The University of Texas at Austin, Austin, TX 78712-

1085, USA

Received 10 November 1999

Dedicated to the memory of Warner T. Koiter

Abstract

A combined experimental and analytical study of the dynamic propagation of buckles initiated in long pipes under

external pressure is presented. The experiments involve measurement of the steady-state velocity of buckles initiated in

stainless steel tubes with D=t � 27:9. Results from tubes pressurized by air or water are presented for pressure levels

ranging from the propagation pressure to the collapse pressure of the tube. The buckle velocity in air was found to be

signi®cantly higher than in water at the same pressure. The ¯ip±¯op mode of buckle propagation was found to take

place for pressure levels 13% below the collapse pressure and higher.

A ®nite element model, capable of simulating the dynamic initiation and propagation of such buckles has been de-

veloped. The model accounts for the inertia of the pipe, the nonlinearity introduced by contact between the collapsing

walls of the pipe while the material is modeled as a ®nitely deforming elastic±viscoplastic solid. The buckling and collapse

are assumed to take place in vacuum. The model is shown to reproduce well the dynamic initiation and propagation of

buckles in air and the predicted velocities are in good agreement with those measured in this medium. The buckle was

found to sharpen signi®cantly with pressure. This sharpening, coupled with higher pressure, causes an increase in the

amplitude of reverse ovality in a zone just ahead of the propagating buckle front. At higher pressures, the reverse ovality

is shown to be high enough to initiate collapse at a new site. The new collapse is at 90° to the original one. This sequence of

events is repeated, resulting in the ¯ip±¯op mode of buckle propagation. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Buckling and collapse due to external pressure are important issues governing the design of pipelines
installed in deep waters. A second concern, often of equal importance, is the survival of the line in case a
propagating buckle is accidentally initiated in the pipeline. Propagating buckles can be initiated from a
locally weakened section of the pipe for instance due to a dent induced by impact by a foreign object
(Kyriakides et al., 1984a; Park and Kyriakides, 1996), due to a local buckle resulting from excessive
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bending during installation (Johns et al., 1975; Murphey and Langner, 1985; Corona and Kyriakides, 1988;
Ju and Kyriakides, 1991) or due to a wall thickness reduction caused by wear or corrosion. Once initiated,
buckles propagate at high velocities and have the potential of quickly destroying the whole line. The lowest
pressure at which such a buckle propagates is the propagation pressure �PP�, a characteristic pressure of the
pipe (Kyriakides and Babcock, 1981; Dyau and Kyriakides, 1993b). The propagation pressure is typically
only 15±20% of the collapse pressure �PCO� and so in most projects, designing the line based on the
propagation pressure is impractical. The preferred alternative is to base the design on the collapse pressure
and install buckle arrestors at regular intervals along the length of the line. In the event of initiation of a
buckle, the arrestors limit the damage to the length of pipe separating the arrestors on either side of the
initiation site (typically a few hundred feet).

Buckles initiated at any pressure higher than PP propagate dynamically. Velocities of hundreds of feet
per second were reported by Kyriakides and Babcock (1979) in experiments on model aluminum tubes (the
measured velocities were reproduced by a numerical model by Song and Tassoulas, 1993). Even higher
velocities were recently reported from similar experiments on stainless steel tubes (Netto and Kyriakides,
2000a). In both studies, it was shown that buckle velocities in experiments in which air was the pressurizing
¯uid were signi®cantly higher than buckle velocities at the same pressure in water. This con®rms that the
velocity of propagation is in¯uenced by an interaction between the collapsing structure and the pressurizing
¯uid (see. Netto et al., 1999).

To date, most work on buckle propagation in pipelines has dealt with the issues of initiation of prop-
agating buckles from local buckles and dents (e.g. Kyriakides et al., 1984b; Dyau and Kyriakides, 1993a;
Park and Kyriakides, 1996), and with the prediction of the propagation pressure (see Chater and Hutch-
inson, 1984 and the review in Kyriakides, 1993). These problems are dealt with adequately at the quasi-
static setting. By contrast, the dynamics of propagating buckles have received less attention. Dynamic
buckle propagation di�ers from quasi-static propagation in several ways which in¯uence the ®nal collapsed
state. For example, the inertial loads contribute to the deformation of the collapsed pipe and increase the
potential of cracking of the highly strained pipe wall; the dynamic engagement of arrestors by running
buckles alters their arresting performance (Kyriakides and Babcock, 1980; Netto and Kyriakides, 2000a,b);
the high strain rates that are induced by dynamic collapse to parts of the collapsing walls may alter the
collapse pro®le; in¯uence of dynamics on both pipe girth and seam welds is also an issue of practical
concern. An additional issue, perhaps of more scienti®c rather than practical interest, is the ¯ip±¯op mode
of buckle propagation discovered in the experiments of Kyriakides, 20 years ago (Kyriakides and Babcock,
1979; Kyriakides, 1980).

Netto and Kyriakides (2000a) recently reported some new results on the dynamics of propagating
buckles obtained in the course of a study of the dynamic performance of integral buckle arrestors. They
include measurements of steady-state buckle velocities in air and water for a speci®c range of pressures. The
experiments were conducted on stainless steel (SS) 304 seamless tubes with D=t � 27:9 (nominal). Dynamic
experiments in air were simulated numerically with success. The simulations revealed the mechanism
through which dynamics enhances the performance of such arrestors. In the present article, we extend the
testing pressures to cover the whole range of interest �PP < P < PCO� and use the numerical model devel-
oped to study dynamic buckle propagation in more detail.

2. Experiments

2.1. Experimental setup and procedure

The objective of the experiments is to initiate a propagating buckle in a long tube in a constant pressure
environment, let it accelerate to steady-state and measure its velocity. This is done for several values of
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pressure in the range PP < P < PCO. The methodology followed is similar to that used by Kyriakides (1980)
but the experiments were conducted in a larger testing facility with a much higher pressure capacity. Fig. 1
shows the testing setup used. The main component is a 7 in. (178 mm) internal diameter, 13 ft (4 m) long
pressure vessel with a pressure capacity of 9000 psi (620 bar). It can be pressurized by water or air.

The test specimens are seamless SS-304 tubes with a diameter of 1.75 in. (44.5 mm) and a nominal wall
thickness of 0.065 in. (1.65 mm). The length of the test specimens in the majority of the dynamic tests was
32 tube diameters. Three strain gages �Gi; i � 1; 3� are mounted along the length of the tube (Fig. 1) for the
purpose of establishing the velocity at which the buckle propagates. The strain gages and the connecting
cables are covered with a compliant coating for water proo®ng. Each tube is sealed with solid end plugs,
and the assembly is placed in the vessel so that its axis is at a level of one-third of the vessel inner diameter
from the lowest point of the vessel inner wall as shown in Fig. 2.

When water is the pressurizing ¯uid, the vessel is ®lled with water leaving an air pocket which is then
pressurized by air using air boosters. The size of the air pocket is large enough so that the pressure drop
after the tube collapses is approximately 5% or less of the initial value. For air experiments, the vessel is
directly pressurized by air.

Once the desired pressure is reached, a buckle is initiated close to one end of the tube by impact with a
circular steel indentor shown in Fig. 2. The indentor is connected to a hydraulic actuator external to the
vessel which is mounted onto the loading frame shown in the ®gure. A load cell and an LVDT dis-
placement transducer are used to monitor the applied load and indentor displacement. The actuator is
operated via a closed-loop servo controlled system shown schematically in Fig. 2. In these experiments, the
actuator is operated under displacement control and the tube is impacted at a velocity of 0.5 in./s (12.7
mm/s).

The pressure is monitored by an electrical pressure transducer as well as by analog pressure gages. The
pressure transducer signal, that of the load cell, the LVDT and the ones from the three strain gages, suitably
conditioned, are monitored via a computer operated data acquisition system using the LabVIEW software.
Typically, data are acquired at a rate of 50,000 sets of samples per second. The data acquisition system is
triggered by the signal from the ®rst strain gage but, by employing a pre-trigger feature of the system, data
could be acquired from the moment the indentor motion commenced.

Fig. 3(a) shows a typical force history from the indentor and Fig. 3(b) shows the signals from the three
strain gages all on a common time base (time zero is chosen arbitrarily). In this case, the ambient pressure
was set at 1555 psi (107.2 bar) (PCO � 2184 psi (150.6 bar)) and the pressurizing ¯uid was water. The in-
dentor force is seen to increase up to a time of approximately 65 ms. We consider the load maximum to
correspond to the initiation of local collapse (at 64.49 ms). The buckle requires some time to accelerate to
steady-state propagation. Thus, it reaches G1 at 190.82 ms, G2 at 192.16 ms and G3 at 193.46 ms (negative

Fig. 1. Schematic of experimental setup used in dynamic buckle propagation experiments.

S. Kyriakides, T.A. Netto / International Journal of Solids and Structures 37 (2000) 6843±6867 6845



voltage spikes). Using the distances between the gages, the velocity between G1 and G2 is evaluated to be
653 ft/s (199 m/s), and between G2 and G3 as 673 ft/s (202 m/s). We take the latter value to be the steady-
state velocity. The strain gages were usually located at the top of the cross-section of the collapsing tube
where they were oriented along the axial direction (see inset in Fig. 3(b)). The buckle pro®le involves a
change in the sign of the local curvature and this is re¯ected in the signals.

2.2. Experimental results

2.2.1. Buckle velocity
Steady-state velocities �U� from eight experiments in air and 22 in water are plotted in Fig. 4 against the

external pressure (initiation pressure PI is the average of the pressure at the start and at the end of the test).
The velocity is normalized by

����������
r0=q

p
, where r0 is the yield stress of the tube material measured in tensile

tests on axial test coupons extracted from each tube used in the experiments and q is the steel density (0.280
lb/in.3 to 7750 kg/m3). The pressure is normalized by the propagation pressure of each individual tube
estimated by the following empirical relationship:

P̂P � r0A
t
D

� �b

; �1�

Fig. 2. Indentor and actuator used to initiate propagating buckles in tubes under external pressure.
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where D is the tube diameter and t, its wall thickness. For stainless steel, 304 A � 35:547 and b � 2:471
(Dyau and Kyriakides, 1993b). The main parameters of the individual tubes tested in water are listed in
Table 1 and those tested in air in Table 2.

In both sets of experiments, the velocity was measured from pressure levels slightly higher than the
propagation pressure to values close to the collapse pressure. The tubular test specimens originated from 20
di�erent tubes each approximately 20 ft (6 m) long with the same nominal dimensions and properties. The
actual diameter, wall thickness and yield stress varied to some degree from tube to tube and this is re-
sponsible for the scatter seen in the results (the normalization used reduces some of the scatter but not all of
it). Overall, buckles travel faster when air is the pressurizing medium as opposed to water at the same
pressure. For example, for pressure in the neighborhood of 4PP the air velocity is of the order of 1000 ft/s
(305 m/s), whereas in water it is of the order 800 ft/s (244 m/s). This shows that the added mass of the
pressurizing ¯uid plays a role in the dynamics of buckles as suggested in Kyriakides and Babcock (1979)
(see also Song and Tassoulas, 1993).

2.2.2. Length of buckle pro®le
Kyriakides (1980) used the signals from strain gages, mounted onto the tubes in a fashion similar to what

was done here, to estimate the lengths of the buckle pro®les as a function of the initiation pressure. For the

Fig. 3. Typical data recorded in a dynamic experiment: (a) indentor force and (b) strain gage signals as a function of time.
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aluminum tubes �D=t � 35:7� tested, he found that the pro®le of the buckle sharpened considerably as the
initiation pressure was increased. The length of the pro®le (a) decreased from approximately 8D just above
the propagation pressure to approximately 2D close to the collapse pressure. Further, the pro®le length, to
®rst order, was inversely proportional to

��������������������
PI=PP ÿ 1

p
.

We used the same method to estimate the lengths of the buckle pro®les in our dynamic experiments. We
have seen (Fig. 3(b)) that as the buckle passes by a particular strain gage, the axial strain recorded, un-
dergoes a change in sign due to the switch in curvature associated with the buckle pro®le. We designate the
time interval associated with the passage of the buckle by a strain gage as DTp and use the measured buckle
velocity �U� to estimate the pro®le length �a� from

a � UDTp: �2�
Eq. (2) was used to estimate buckle pro®le lengths for most of the experiments conducted. The estimate

was based on the signals from gages G2 and/or G3. Fig. 5 shows a plot of several of the pro®le length
estimates normalized by the tube diameter versus the normalized pressure. The results from several air and
water experiments are included. The pro®le length at quasi-static propagation was estimated to be ap-
proximately 6:5D. Despite the relatively crude measurement technique used, the trend is quite clear. As the
pressure increases, the buckle pro®le decreases quite considerably. Most of the sharpening of the pro®le
occurs for pressures lower than 2PP, while subsequently the pro®le length stays within the range of 2:8D to
3:3D. In general, the pro®le lengths are a bit shorter in the air experiments than those in water at the same
pressure. This di�erence is attributed to the higher buckle velocity of the air experiments.

2.2.3. Flip±¯op mode of buckle propagation
In the course of measuring the velocity of propagating buckles as a function of pressure, Kyriakides

(1980) discovered the ¯ip±¯op mode of buckle propagation. He found that when a buckle was initiated in a
long tube loaded to a pressure level of the order of 90% of the collapse pressure of the intact tube, or higher,

Fig. 4. Buckle velocity of propagation as a function pressure for water and air experiments.
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the following events took place. The buckle propagated a certain distance down the tube and then the
direction of collapse rotated by 90°. The buckle propagated some distance in the new orientation and then
switched orientation once more returning back to the original collapse mode. The process was repeated
several times until the end of the tube was reached. Several such experiments were conducted on Al-6061-T6
tubes of D=t of 35.7 and 47.6 at pressures ranging from approximately 0:91PCO to 0.99PCO which con®rmed
the repeatability of the phenomenon.

The phenomenon was also encountered in several of the present experiments. For example, several ¯ip±
¯ops were obtained in an experiment on a SS-304 tube 48D long pressurized by air to 2050 psi (141.4 bar) in
the test facility shown in Fig. 1. The buckle was initiated at one of the ends, propagated a distance of 10:6D
from the point it was impacted and ¯ipped. It ¯ipped two more times further downstream at successive

Table 1

Buckle velocities at various levels of pressure and tube parameters for water experiments

D, in. (mm) t, in. (mm) r0, ksi (MPa) PI, psi (bar) PI=P̂P U , ft/s (m/s)

1.746 (44.35) 0.0617 (1.567) 46.0 (317) 1818 (125.3) 4.092 694 (212)

1.747 (44.37) 0.0629 (1.598) 45.1 (311) 1780 (122.7) 4.099 742 (226)

1.750 (44.45) 0.0642 (1.631) 39.4 (271) 1762 (121.5) 4.438 694 (211)

1.746 (44.35) 0.0618 (1.570) 46.0 (317) 1748 (120.5) 3.918 795 (242)

1.750 (44.45) 0.0637 (1.618) 39.0 (269) 1725 (117.5) 4.469 742 (226)

1.746 (44.35) 0.0628 (1.595) 44.5 (307) 1681 (115.9) 3.937 706 (215)

1.753 (44.53) 0.0653 (1.659) 43.2 (298) 1659 (114.3) 3.667 673 (205)

1.747 (44.37) 0.0622 (1.580) 46.0 (317) 1654 (114.0) 3.841 691 (211)

1.746 (44.35) 0.0619 (1.572) 44.5 (306) 1650 (113.7) 3.999 742 (226)

1.746 (44.35) 0.0628 (1.595) 44.5 (307) 1584 (109.2) 3.710 684 (208)

1.747 (44.37) 0.0621 (1.577) 46.0 (317) 1555 (107.2) 3.626 673 (205)

1.746 (44.35) 0.0619 (1.572) 44.5 (306) 1553 (107.0) 3.764 729 (222)

1.750 (44.45) 0.0639 (1.623) 39.4 (271) 1459 (100.6) 3.717 608 (185)

1.746 (44.35) 0.0620 (1.575) 46.0 (317) 1454 (100.2) 3.399 599 (183)

1.746 (44.35) 0.0618 (1.570) 44.5 (306) 1450 (99.9) 3.528 663 (202)

1.748 (44.40) 0.0622 (1.580) 46.9 (323) 1349 (93.0) 3.078 616 (188)

1.750 (44.45) 0.0636 (1.615) 39.0 (269) 1348 (92.9) 3.506 554 (169)

1.748 (44.40) 0.0622 (1.580) 46.9 (323) 1168 (80.5) 2.665 527 (161)

1.752 (44.50) 0.0641 (1.628) 39.0 (269) 1150 (79.3) 2.942 465 (142)

1.748 (44.40) 0.0623 (1.582) 46.9 (323) 1073 (73.9) 2.439 481 (147)

1.750 (44.45) 0.0640 (1.626) 39.7 (274) 1071 (73.8) 2.696 451 (137)

1.752 (44.50) 0.0670 (1.702) 39.9 (271) 825 (56.9) 1.873 358 (109)

1.752 (44.50) 0.0670 (1.702) 39.9 (272) 622 (42.9) 1.412 236 (72)

Table 2

Buckle velocities at various levels of pressure and tube parameters for air experiments

D, in. (mm) t, in. (mm) r0, ksi (MPa) PI, psi (bar) PI=P̂P U , ft/s (m/s)

1.753 (44.53) 0.0658 (1.671) 43.2 (298) 1676 (115.6) 3.636 972 (296)

1.751 (44.48) 0.0645 (1.638) 37.5 (259) 1579 (108.9) 4.134 972 (296)

1.753 (44.53) 0.0651 (1.653) 43.2 (298) 1577 (108.8) 3.512 931 (284)

1.751 (44.48) 0.0638 (1.621) 40.0 (276) 1485 (102.4) 3.741 858 (262)

1.754 (44.55) 0.0649 (1.648) 43.2 (298) 1287 (88.8) 2.892 754 (230)

1.749 (44.43) 0.0660 (1.676) 44.4 (306) 1016 (70.1) 2.116 673 (205)

1.749 (44.43) 0.0661 (1.679) 44.4 (306) 841 (58.0) 1.745 507 (155)

1.749 (44.43) 0.0661 (1.679) 44.4 (306) 644 (44.4) 1.336 308 (93.9)

1.748 (44.40) 0.0653 (1.659) 45.5 (314) 2050 (141.4) 4.274 F±F
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distances of 10:3D and 11:1D. The photograph in Fig. 6(a) shows two of the nodes formed by the ¯ipping of
the collapse mode. An enlarged view of one of the nodes can be seen in Fig. 6(b). The geometric and
material properties of this particular tube are listed in the last row of Table 2. Using these parameters and
an initial ovality of 0.2%, its collapse pressure was estimated to be 2350 psi (162.1 bar). Thus, for this tube,
the ¯ip±¯op mode occurs (for certain) for values of pressure higher than 0:87PCO but possibly also at
somewhat lower values.

Kyriakides (1980) used high speed photography to capture the ¯ipping of the collapse mode. The ex-
periments were conducted in a transparent acrylic pressure vessel with a pressure capacity of 240 psi (16.5
bar). The tubes used were Al-6061-T6 with a diameter of 1 in. (25.4 mm) and a D=t of 47.6. They had a
collapse pressure of 205 psi (14.1 bar). A sequence of seven photographs from one of these experiments
conducted at an air pressure of 192 psi (13.2 bar) is shown in Fig. 7 (corresponds to Fig. 4.5 of Kyriakides
(1980) enhanced recently using the Adobe Photoshop software). The photographs were recorded at 4000
frames and thus they are separated by time intervals of 250 ns. The buckle is seen entering the viewing ®eld
traveling from left to right at a velocity of 790 ft/s (241 m/s). The tube is seen collapsing in the plane of the
photographs. Ahead of the buckle front, there is a visible zone of reverse ovalization extending over a
length of approximately 10D. In views to , the buckle propagates to the right with the zone of reverse
ovality just ahead of it. Between views and , the reverse ovality grows su�ciently to become critical for
the existing ambient pressure. This region of the tube collapses and, in the process, initiates a propagating
buckle at a new site. The new buckle is oriented at 90� to the original one. The original buckle and the new
one run into each other forming the node seen in view . The node is similar to those from the tube tested
in the present study shown in Fig. 6.

From the high speed photographic results and from measurements made on the tubes tested, Kyriakides
(1980) concluded that the ¯ipping of buckles is due to the following: Local ¯attening of a long cylindrical
shell, say, by a pair of diametrically opposite point or line loads, results in a secondary ovalization, some
distance (a few radii) away from the local ¯attening. The major axis of this ovalization is oriented at 90� to
the major axis of the applied ¯attening and extends over a length of a few radii. The reverse ovality also
occurs in thin elastic shells (Yuan, 1946; Yuan and Ting, 1957) but is ampli®ed signi®cantly as the cylinder

Fig. 5. Buckle pro®le length estimated from the strain gage signals vs. the initiation pressure.
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is crushed plastically (Reid et al., 1976; Kyriakides, 1980). Thus, ahead of any propagating buckle there
always exists a zone of reverse ovality (see Dyau and Kyriakides, 1993a,b; Netto and Kyriakides, 2000b).
The extent of the reverse ovality depends on the pro®le length.

Once initiated, buckles accelerate to a steady-state velocity which is determined by the pressure, the
pressurizing ¯uid and the tube geometric and material parameters. As the buckle accelerates, its front
sharpens as reported above. This sharpening of the front increases the reverse ovality induced to the section
of tube just downstream of the buckle. The higher the pressure, the larger the amplitude of the reverse
ovality. At some pressure level, the reverse ovality is su�ciently large to cause collapse in the manner shown
in Fig. 7. The new local collapse accelerates to a speed at which the buckle front has shortened su�ciently
to induce a new zone of critical reverse ovality ahead of it and the events are repeated. These conclusions
will be scrutinized in the next section in the light of numerical results.

2.2.4. Strain rate e�ects
In the range of buckle velocities reported in Tables 1 and 2, points on the collapsing cross-section of the

tubes can reach very high strain rates � _e�. From the strain gage signals, _e is estimated to be in the range of

Fig. 6. Flip±¯op mode of buckle propagation as recorded in an experiment on a SS-304 tube with D=t � 26:8: (a) Two changes in

buckle propagation mode. (b) Detail of a ¯ip±¯op node.
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200±800 sÿ1 for the water experiments and 800±1200 sÿ1 for the air experiments. At strain rates of these
levels, the mechanical behavior of steels changes signi®cantly and this change must be taken into account in
the analysis of the problem. The rate dependence of our stainless steel material was established in a series of
uniaxial tension tests performed at prescribed values of constant strain rate. The ¯ow stress at rates of the
order of 102 and higher is usually established from Hopkinson bar experiments. Results from such ex-
periments on SS-304L spanning rates of _e 2 �10ÿ4; 104� were reported in Stout and Follansbee (1986). Their
results are summarized in Fig. 8 in a plot of the true stress �rt� at a logarithmic strain (e) of 0.1 versus the
true strain rate. At a strain rate of approximately 102, the ¯ow stress undergoes a dramatic increase in its
rate dependence. Included in the same plot are results from the more limited study we performed on the
tube material. Although the actual values of the ¯ow stresses of the two stainless steels at any given strain
rate di�er, their trend with the rate is similar. In the calculations that follow, we will assume that this
similarity in the rate dependence of the two materials continues at higher rates. With this assumption, the
material is modeled through the classical overstress powerlaw viscoplastic model in which the plastic strain
rate is assumed to obey the following rule:

Fig. 7. Sequence of high speed photographs showing the ¯ip±¯op mode of buckle propagation (Al-6061-T6, D=t � 47:6,

PI=P̂CO � 0:934, 4000 frames; from Kyriakides (1980)).
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_ep � D
r

R�ep�
� �m0

: �3�

Here R�ep� is the ¯ow stress measured at a low base strain rate � _e � 10ÿ4�. D � 80� 103 and m0 � 5
were found to reproduce the sensitivity to rate measured by Stout and Follansbee (dashed lines in
Fig. 8).

3. Analysis

3.1. Finite element model

The dynamic propagation of buckles and their engagement with integral buckles arrestors was recently
investigated by Netto and Kyriakides (2000b) using a ®nite element model developed within the nonlinear
code ABAQUSABAQUS. The calculations performed were limited to the case of buckle propagation in vacuum. We
expect this to be representative of experiments conducted in air where the role of the inertia of the pres-
surizing ¯uid is small. Here, we use the same model and numerical procedures to study the initiation and
steady-state dynamic propagation of buckles and the problem of ¯ipping of buckles.

The model consists of a section of tube length L. The deformation of the tube cross-section is assumed to
have two planes of symmetry (planes 1, 2 and 1±3 in Fig. 9). In addition, planes 2, 3 passing through the
location at which the propagating buckle is initiated, is also assumed to be a plane of symmetry. The tube is
discretized with three-dimensional, 27-node, quadratic brick elements (C3D27R) with reduced integration.
In the axial direction, the model is discretized with elements approximately 0:71D long. In the circumfer-
ential direction, the 90° sector is discretized with 10 elements with the following angular spans (starting
from the x2-axis): 10°±10°±15°±15°±10°±10°±7:5°±7:5°±2:5°±2:5°. Two elements are used through the
thickness.

Contact is simulated by using the surface-based contact modeling. This model prevents the nodes that
de®ne the inner surface of the tube from penetrating the planes of symmetry which are made to be rigid
(R3D4).

The boundary nodes at x1 � L are constrained in the radial and circumferential directions and are free to
move in the x1-direction. Symmetry conditions are imposed at the nodes at x1 � 0; x2 � 0 and x3 � 0.
Unless otherwise stated, the tubes will be assigned the same geometric properties as those used in the study

Fig. 8. True ¯ow stress as a function of strain rate for tube material compared with results of Stout and Follansbee for a similar alloy.
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of dynamic arrest of buckles given in the ®rst row of Table 3 (taken from Netto and Kyriakides, 2000a).
These dimensions represent the mean values of the whole set of tubes used in the broader study of dynamics
of buckles performed by the authors.

A buckle is initiated from a local imperfection in the form of ovality in the neighborhood of the sym-
metry plane �x1 � 0� de®ned by

w0�h�
R
� ÿD0 exp

�
ÿ b

x
D

� �2
�

cos 2h; �4�

where w0 is the radial displacement, h is the polar angular coordinate and x is the axial coordinate. The
amplitude D0 is chosen to ®t the needs of the case analyzed and the constant b decides the extent of the
imperfection (usually limited to one tube diameter).

3.2. Constitutive model

The material is modeled as an elastic/powerlaw overstress viscoplastic solid. The strain rates are assumed
to consist of an elastic part and an inelastic part

_e � _ee � _ep: �5�
Elastic deformations are linear and isotropic and are related to stresses by

_ee � 1� m
E

_rÿ m
E
�tr _r�I or _r � C�E; m� _ee; �6�

Table 3

Geometric and material parameters of tubes used in this study

D, in. t, in. E, msi r0, ksi ry , ksi n q lb in.ÿ3

(mm) (mm) (GPa) (MPa) (MPa) (kg mÿ3�
Average values 1.748 0.0627 29.2 43.84 39.6 12 0.280

(44.40) (1.59) (205) (301.7) (272) (7750)

F±F exp. 1.748 0.0653 28.7 45.5 41.0 10.5 0.280

(44.40) (1.659) (200) (314) (283) (7750)

Fig. 9. Geometry of the tube analyzed and co-ordinate system.
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where E is Young's modulus and m, Poisson's ratio of the material, both assumed to be independent of rate.
The inelastic part of the deformation ( _ep) is assumed to exhibit an overstress powerlaw rate dependence,
which for a uniaxial state of stress is given by Eq. (3) (Malvern, 1951; Ripperger, 1965). The model is
calibrated to the base stress±strain response shown in Fig. 10 ®tted with approximately 40 linear segments
of unequal strain span. The constants D and m0 were selected as described in Section 2.2.4.

The model was generalized to the multiaxial setting through the classical associative plasticity frame-
work (e.g. see Peirce et al., 1984). The plastic strain is given by

_ep � K
of
or

�7a�

with the following choice for f :

f � re �
���������
3
2
s � s

q
; s � rÿ 1

3
�trr�I : �7b�

A work compatible measure of equivalent strain rate is

_ep
e �

�������������
2
3
_ep � _ep

q
: �7c�

Thus, Eqs. (3), (7b) and (7c) ! (7a) yield

_ep � _ep
e

3

2

s
re

� �
� D

re

R�ep
e �

�
ÿ 1

�m0
3

2

s
re

� �
; �8a�

where

ep
e �

Z t

0

_ep
e dt: �8b�

By combining Eqs. (8a), (8b) and (6) through Eq. (5) and inverting we arrive at

Fig. 10. Mean stress±strain response of the tubes used in the experiments and the one for the tube used in the ¯ip±¯op experiment

reported.
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_r � C _eÿ 3 _ep
e

2re

 !
Cs: �9�

4. Numerical results

4.1. Quasi-static buckle propagation

We ®rst brie¯y review the quasi-static version of the problem, the solution of which will help illustrate
the changes induced to the front of the propagating buckles by dynamics. Dyau and Kyriakides (1993a,b)
traced the unstable path followed by tubes collapsed by external pressure by prescribing the change in the
internal volume of the tube (usually a monotonically increasing variable). In the present calculations, the
hydrostatic ¯uid elements of ABAQUSABAQUS is employed instead (a combination of F3D3 and F3D4). These
elements allow prescription of the change in volume inside a control region de®ned around the structure
which is an equivalent method of volume control. In both the schemes, the pressure becomes an additional
unknown while the volume change is enforced as a constraint via the Lagrange multipliers method. For
quasi-static calculations, the material is modeled as a J2 ¯ow theory solid with isotropic hardening cali-
brated to the base stress±strain response given in Fig. 10 (mean curve).

The pressure change in volume �dv=v0� response calculated for the present tube is shown in Fig. 11 (v0 is
the initial volume of the tube and P̂CO is the calculated collapse pressure of the tube, 2184 psi (150.6 bar)).
Fig. 12 shows a set of deformed con®gurations of the tube generator �x; 0� which correspond to the
numbered points marked on the P±dv response. Due to the localized imperfection the pressure reaches
a maximum at 1945 psi (134.1 bar) and subsequently the tube collapses locally as described in Dyau and
Kyriakides (1993a,b). The local collapse is arrested when the walls of the tube come into contact (con-
®guration ). This corresponds to the local minimum in the P±dv response. Subsequently, the collapse
starts to propagate down the length of the tube and quickly reaches steady-state propagation conditions
(con®gurations to ) tracing the pressure plateau seen in Fig. 11. This is the propagation pressure �P̂P� of
the tube which is 425 psi (29.3 bar). This value is in very good agreement with the measured results (Netto
and Kyriakides, 2000a).

Fig. 11. Simulated pressure-change in volume responses for quasi-static and dynamic propagation of buckles.
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A full view of buckled con®guration rendered through the SunVision image processing system
and edited via the Adobe Photoshop software is shown in Fig. 13(a). The crown points of the collapsed
cross-section behind the front are in contact essentially along an axial line. The deformed generator �x; 0�

Fig. 13. Tube calculated deformed con®gurations during steady-state: (a) Quasi-static propagation and (b) dynamic propagation

(U � 1100 ft/s, 335 m/s).

Fig. 12. Sequence of deformed contours of generator �x; 0� for quasi-static buckle propagation corresponding to the points marked on

response in Fig. 11.
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corresponding to this con®guration is plotted in Fig. 14(a). The length of the pro®le, de®ned as the distance
between the ®rst points on either side of the generator to reach zero slope, is approximately 6:4D. Adjacent
to the buckle pro®le is a zone of reverse ovality not discernible in the scale of Figs. 13 and 14(a). The ovality
�D� of this section of tube was calculated using the de®nition

D � Dmax ÿ Dmin

Dmax � Dmin

: �10�

The calculated values are plotted against the axial coordinate in Fig. 14(b). Reverse ovalization is seen
to extend over a length of approximately 4.5 tube diameters. Its maximum value is approximately
0.32%.

4.2. Dynamic buckle propagation

4.2.1. A characteristic example
A brief description of the formulation and numerical procedures used in ABAQUSABAQUS for dynamic calcu-

lations is given in Appendix A (based on implicit integration). As in the experiments, there are several
possible ways of initiating the collapse. For numerical expediency, dynamic buckles are initiated as follows:
The tube is loaded by external pressure using Riks' path following scheme to follow the loading history past
the pressure maximum. The subsequent unstable regime is followed until the pressure drops to the level
chosen for the dynamic test (dashed line in Fig. 11). The pressure is ®xed at the desired level and a switch is
made to the dynamic version of the model. The last equilibrium solution of the quasi-static analysis is given
a small perturbation (usually at x � 0, where the imperfection has the largest amplitude) and the dynamic
solution is followed by appropriate time integration. For the tube discussed above, the maximum pressure
is 1945 psi (134.1 bar). The pressure is allowed to drop to 1750 psi (120.7 bar), its value is ®xed and the
dynamic analysis is commenced.

Fig. 15 shows the initial and a sequence of deformed con®gurations of the tube generator �x; 0� from this
dynamic calculation. Several of the con®gurations are identi®ed by numbered bullets marked on the P±dv

Fig. 14. (a) Comparison of deformed contours of specimen generator �x; 0� from quasi-static and dynamic solutions at four levels of

pressure. (b) Expanded contours of same generator showing tube reverse ovalization ahead of the buckle fronts.
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response in Fig. 11. The extent of local collapse is initially similar to that from the quasi-static solution. On
the way down the collapsing walls (con®gurations to ) accelerate. Con®guration , which approxi-
mately corresponds to the ®rst contact of the crown points of the collapsed section, reaches 0.518 ms into
the dynamic simulation. Subsequently, the buckle propagates down the length of the tube. During this
process, the pro®le of the buckle sharpens and by con®guration �T � 0:658 ms), a steady state is achieved
where the buckle is propagating at a constant velocity of approximately 1100 ft/s (335 m/s). A linear ®t of
the buckle velocities measured in the experiments in this pressure regime yielded a value of 1035 ft/s (315 m/
s) for this pressure.

A rendering of the calculated pro®le of the buckle in the steady-state conditions is shown in Fig. 13(b),
while the corresponding deformed contour of the generator �x; 0� is included in Fig. 14(a) �PI=P̂P � 4:118�.
The di�erences between the pro®le at the propagation pressure and the present one are signi®cant. In the
dynamic case, the tube behind the buckle is essentially ¯attened by the much higher ambient pressure and
by the inertial forces. This results in the much sharper buckle pro®le seen clearly in Figs. 13 and 14(a).
The length of the pro®le is now 3:3D, i.e., down to almost half the length of the pro®le at P̂P. This value
is in reasonable agreement with corresponding values estimated from the strain gage signals shown in
Fig. 5.

This sharpness of the collapse pro®le in turn causes a signi®cant increase in the amplitude and to some
degree the extent the reverse ovality induced to the tube downstream of the buckle pro®le. This is illustrated
in the expanded contour detail included in Fig. 14(b) (again look at PI=P̂P � 4:118�. Reverse ovality now
extends over a section of four tube diameters long while the amplitude of the maximum ovality has in-
creased to 1.8% or approximately six times the amplitude at the propagation pressure.

In order to delineate the e�ect of material rate dependence on the dynamics of buckles, we conducted a
similar calculation in which the material was modeled as a rate independent J2 ¯ow theory solid which
hardens isotropically. The stress±strain response used to calibrate the model is the one (mean) shown in Fig.
10. The processes of dynamic collapse, localization and steady-state propagation are very similar. The
buckle velocity at steady-state was essentially the same (�1100 ft/s to 335 m/s). The buckle pro®le for this
calculation is compared to that from the rate dependent case in Fig. 16. The pro®le is very similar but the
region of reverse ovality (Fig. 16(b)) is somewhat larger in extent (�4.3D) and in amplitude (D � 2:3%)
probably due to the lower yield stress of this material model. Thus, the rate dependence of SS-304 plays
some role in the results but not as large as might be expected from the fact that points on the collapsing

Fig. 15. A sequence of deformed contours of generator �x; 0� showing the initiation and subsequently steady-state dynamic propagation

of a buckle at PI � 1750 psi (120.7 bar).
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cross-section, strain rates of the order of 103 sÿ1. The main mechanism of collapse is bending and thus only
small parts of the collapsing front experience these high strain rates (see Netto, 1998, Chapter 6).

4.2.2. Buckle velocity as a function of pressure
Dynamic calculations of the type described above were conducted for 12 cases with initiation pressures

in the range 1:117 6 PI=P̂P 6 4:118 using the tube geometric and material parameters listed in Table 3 and
Fig. 10. The calculated steady-state buckle velocities �Û� are plotted against the initiation pressure in Fig.
17 along with the experimental values (for the predictions, the normalizing variables are: P̂P � 425 psi to

Fig. 17. Comparison of buckle velocities measured in experiments in air and predicted values for buckles propagating in vacuum.

Fig. 16. Comparison between contours of generator �x; 0� from dynamic calculations using the J2 ¯ow theory and the visco-plastic

overstress model.
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29.3 bar and
����������
r0=q

p � 645 ft/s to 196.6 m/s). The predicted velocities are seen to follow well the trend of the
experimental values and to exhibit less scatter due to the constant tube variables used in the calculations. In
this scheme, one-to-one comparison of measured and predicted velocities is not possible. However, clearly
the predictions are generally somewhat higher than the measured values. In the experiments, air was present
both inside the collapsing tubes as well as outside them. In the model the tubes collapsed in vacuum.
Although the e�ect of the air is not considered to be very signi®cant, it obviously had some e�ect which
causes the measured velocities to be somewhat lower than the predictions.

4.2.3. Study of the buckle pro®le
The numerical simulations provided a more quantitative picture of how dynamics alters the pro®le of a

propagating buckle. At each pressure level considered, the length of the pro®le of the buckle at steady state
propagation (a) was estimated using the same de®nition of buckle pro®le as that used in the experiments.
The values measured are plotted against the initiation pressure in Fig. 18. Included is the pro®le length for
quasi-static propagation of the buckle �a � 6:4D�. The buckle pro®le is seen to experience signi®cant
sharpening between P̂P < PI < 2:5P̂P when its length is reduced by nearly 40%. Interestingly, this pressure
range corresponds to the values up to the formation of the ®rst knee in the velocity±pressure plot in Fig. 17.
The additional sharpening that takes place at higher pressures is rather modest. Despite the rather crude
way the buckle pro®le was estimated in the experiments, the trend of the predictions is very similar to that
in the corresponding experimental plot in Fig. 5 which is reassuring.

Contours of the generator �x; 0� representing the dynamic buckle pro®les at four pressures are compared
to the quasi-static one in Fig. 14(a). The same tendency is seen here. The pro®le sharpens at lower pressures
but remains relatively unchanged at higher pressures. As stated in the experimental section, sharpening of
the pro®le beyond a certain point must involve signi®cant membrane stretching which requires signi®cantly
more energy than the predominantly bending mechanism through which the buckle sharpens at lower
pressures.

Fig. 18. Calculated values of buckle pro®le length and amplitude of corresponding induced reverse ovality as a function of pressure.
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As discussed earlier, the sharpening of the pro®le of the buckle with pressure, coupled with the fact that
the pressure is higher, result in an increase in the amplitude and, to some degree, the extent of the zone of
reverse ovality that precedes the buckle pro®le. The amplitude of the reverse ovality of buckles propagating
at steady-state was estimated from the numerical results using the de®nition in Eq. (10). The variable D is
plotted against the initiation pressure in Fig. 18 (see also inset). At lower pressures the rate of growth of D
with pressure is relatively modest. Around a pressure level of approximately 3P̂P its rate of growth with
pressure experiences a very signi®cant increase so that at a pressure of 4.118P̂P it reaches a value of 1.8%.
The extent of reverse ovality can be seen in Fig. 14(b) where four dynamic pro®les are compared to the
quasi-static one.

4.2.4. Simulation of the ¯ip±¯op mode of buckle propagation
The highest value of pressure at which a dynamic buckle propagation calculation was performed is

4:118P̂P which corresponds to 0:80P̂CO. The essentially powerlaw growth of reverse ovality with pressure
seen in Fig. 18 indicates that, at some pressure level higher than this value, the reverse ovality may grow to a
high enough value for the a�ected section of the tube to collapse. If this takes place, then a second buckle
initiation site is created where the tube is collapsing at 90� to the original direction of collapse. We in-
vestigated this prospect as follows. A model was developed along the lines described in Section 4.2.1 but
with a length of 24D. In this case, the model was assigned the dimensions and mechanical properties of the
tube used in the speci®c ¯ip±¯op experiment described in Section 2.2.3 (see Table 3 and Fig. 10). Using
these characteristics and an initial ovality of 0.2%, the collapse pressure of this tube is estimated to be 2350
psi (162.1 bar) and its propagation pressure 480 psi (33.1 bar).

The buckle was initiated at the same pressure of 2050 psi (141.4 bar) at which it was initiated in the
experiment �PI=P̂CO � 0:872�. Fig. 19 shows a sequence of deformed tube con®gurations obtained from the
solution. The buckle is initiated in the manner described above in the neighborhood of the plane of
symmetry x � 0. The process of localization of the buckle, the arrest of local collapse by contact, and the
subsequent propagation of the buckle down the tube are the same as described in Section 4.2.1 (con®gu-
rations to ). As the buckle accelerates towards steady-state, the reverse ovality ahead of it grows. This
is clearly seen in the sequence of truncated deformed contours of the tube generator �x; 0� shown in Fig.
20(a). By con®guration , the buckle has propagated a distance of approximately 8:5D. The reverse ovality
ahead of the buckle front reaches a critical amplitude triggering a new collapse event downstream of the
propagating buckle. The onset of this unstable growth of reverse ovality can be seen in Fig. 20(a) and in
more detail in the expanded view in Fig. 20(b). In con®guration in Fig. 19, the new buckle has already
formed. The new mode of collapse is at 90� to the original one.

The newly initiated buckle goes through the same process of localization and propagation down the tube
as the original one. The original buckle and the new one meet and engage each other forming the stationary
node seen in con®gurations to . The center of the node is at x � 8:6D. In the experiment, the buckle was
initiated close to one of the ends of the tube which was sealed by inserting and bonding a solid plug into the
end. This is close to a ®xed boundary condition which di�ers from the symmetry condition used at x � 0 in
the model. Because of this di�erence, the distance from the initiation site to the ®rst node is shorter in the
model than it was in the experiment.

The second buckle propagates down the tube and ¯ips once more forming a second node at a distance
9:8D downstream of the ®rst one (not shown in Fig. 19). This compares well with the distance of 10:3D
between the ®rst two buckle nodes of the experiment.

Two views of the node formed by the ¯ipping event are shown in Fig. 21. Its major characteristics are
similar to the experimental node shown in Fig. 6. Its ridges are somewhat less severely deformed than in the
experiment. This could be corrected by further re®ning the axial distribution of the FE mesh of this region
and repeating the calculation. This was deemed unnecessary and was not carried out due to the very large
computation time required by such calculations.

6862 S. Kyriakides, T.A. Netto / International Journal of Solids and Structures 37 (2000) 6843±6867



5. Conclusions

The problem of dynamic propagation of buckles in long pipes under constant external pressure was
investigated in part by Kyriakides, 20 years ago using relatively thin, model aluminum tubes. The present
study includes new results from stainless steel tubes with D=t � 27:9. Each test specimen was placed in a
constant pressure environment using either air or water as the pressurizing medium. The buckle was ini-
tiated at one of the ends of the specimen by impact; it was allowed to accelerate to steady-state and its
velocity was recorded. The initiation pressures covered the range of PP < PI < PCO. The following major
®ndings are reported from the experiments:

(a) For a given pressure, the buckle was found to travel faster in air than in water, con®rming that the
inertia of the pressurizing ¯uid plays a role in the problem. In air, velocities as high as 1200 ft/s (365 m/s)
were recorded, whereas in water, the highest values were approximately 800 ft/s (244 m/s).

Fig. 19. Sequence of calculated deformed contours of tube collapsing dynamically showing the development of a ¯ip±¯op (P � 2050

psi, 141.4 bar).
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(b) The buckle front was found to sharpen signi®cantly with pressure. When the initiation pressure
reached a value of approximately 2.5PP, the pro®le length was found to get reduced nearly by one half
of its value at quasi-static propagation.
(c) For the tube tested, the ¯ip±¯op mode of buckle propagation was found to occur for pressures higher
than 0.87P̂CO.

Fig. 20. (a) Sequence of deformed contours of part of the tube generator �x; 0� showing the propagating buckle and onset of the ¯ipping

of the collapse mode. (b) Expanded view of generator showing the localization of the reverse ovality ahead of the buckle.

Fig. 21. Two views of the node of the ¯ip±¯op generated in the simulation shown in Fig. 19.
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A model capable of simulating the dynamic initiation and propagation of such buckles has been de-
veloped within the FE code ABAQUSABAQUS. The ¯uid-structure interaction problem has been bypassed at this
stage by assuming buckling and collapse to take place in vacuum. The model accounts for the inertia of the
pipe and the nonlinearity introduced by contact between the collapsing walls of the pipe. The material is
modeled as a ®nitely deforming, elastic/powerlaw overstress viscoplastic solid. The model was used to
calculate the velocity of propagation of the buckle as a function of the ambient pressure. The following
conclusions can be drawn from the numerical results:

1. The calculated buckle velocities are compared with the values measured in the physical experiments in
air. The predictions are somewhat higher than the measured velocities but follow the trend of the exper-
imental results well.

2. The numerical simulations con®rmed the sharpening of the buckle front with pressure. Most of the
sharpening was found to occur between PP < PI < 2:5PP. As was the case in the experiments, at higher
pressures the additional decrease in the length of the buckle pro®le was very modest.

3. Just ahead of the propagating buckle front, the tube experiences some reverse ovality (Kyriakides,
1980). The amplitude of this reverse ovality was found to increase with pressure. This is caused by the
sharpening of the buckle pro®le and by the pressure loading. Eventually, a pressure level is reached at which
the reverse ovality is high enough for it to cause local collapse. This is responsible for the ¯ip±¯op mode of
buckle propagation.

4. The model was shown to be capable of simulating the ¯ip±¯op mode of buckle propagation. Once
initiated, a buckle localizes. Contact between the walls of the collapsing cross-section of the tube arrests
local collapse and the buckle then propagates along the length of the tube. A ®nite time interval is required
for the buckle to reach steady-state propagation. As it accelerates to steady-state, its front sharpens and, in
the process, causes an increase in the reverse ovality downstream of it. If the pressure is at a high enough
level, the reverse ovality eventually initiates a buckle at a new site. The new mode of collapse is at 90° to the
original one. Subsequently, the events are repeated with the ¯ipping being repeated at well de®ned intervals.
The distance between adjacent nodes of the ¯ip±¯op buckling mode was found to be reproduced well by the
model. This sequence of events extracted from the numerical simulation essentially con®rms the scenario
inferred by Kyriakides, 20 years ago using strictly experimental observations and intuition.

Appendix A. Outline of dynamic ®nite element formulation

For the dynamic problem the overall equations of motion correspond to adding a d'Alembert force to
the principle of virtual work (no body forces) as follows:Z

V
r � de dV �

Z
V

T � du dS ÿ
Z

V
q�u � du dV ; �A:1�

where T is the traction per unit current surface area (in this case, the external pressure), q is the current
density of the material and u�x; t� is the displacement ®eld vector (ABAQUSABAQUS, 1995). The ®nite element ap-
proximation to the equations of motion can be expressed as

M�u� F I ÿ F E � 0; �A:2�
where M is the mass matrix, F I is the internal force vector, and F E is the external force vector.

The equations of motion are integrated in time by using the implicit operator of Hilber et al. (1977) and
Hilber and Hughes (1978). Knowing the solution at time t, the problem unknowns are solved at time
(t � Dt) based not only on values at t but also on values estimated for (t � Dt). This is a single parameter
(ÿ1=3 6 a 6 0) operator with controllable numerical damping. If a � 0, there is no damping, and the
operator is the trapezoidal rule; if a � ÿ1=3, signi®cant damping is available. The operator replaces the
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actual equations of motion with a balance of d'Alambert forces at the end of the time step and a weighted
average of the static forces at the beginning and end of the time step as follows:

M�ujt�Dt � �1� a��F Ijt�Dt ÿ F Ejt�Dt� ÿ a�F Ijt ÿ F Ejt� � 0; �A:3�
where

ujt�Dt � ujt � Dt _ujt � �Dt�2��1
2
ÿ b��ujt � b�ujt�Dt�;

_ujt�Dt � _ujt � Dt��1ÿ c��ujt � c�ujt�Dt�;

b � 1
4
�1ÿ a�2 and c � 1

2
ÿ a:

The parameter a was chosen to be ÿ0:05, providing modest numerical damping which quickly removes any
undesirable high frequency numerical noise without a�ecting signi®cantly the actual response. The resulting
set of nonlinear equations is then solved iteratively using Newton's method.
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